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LElTER TO THE EDITOR 

Breakdown of dynamic scaling at the percolation threshold 

S Jain 
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 15 October 1985 

Abstract. The critical dynamics of the two-dimensional Ising model at the bond percolation 
threshold is investigated by Monte Carlo simulations on a 64 x 64 lattice. Conventional 
dynamic scaling breaks down at low temperatures: the logarithm of the relaxation time 
depends quadratically upon the logarithm of the thermal correlation length. The coefficients 
of the quadratic and linear terms are 0.51 and 3.25, respectively. The results are compared 
with recent experimental and analytic work. 

Although there is considerable knowledge about the static behaviour of the two- 
dimensional Ising model at the percolation threshold [ 11, for example, the exponents 
are believed to be known exactly, it is only recently that attention has turned to the 
critical dynamics of this system [2-41. Assuming conventional dynamic scaling [ 5 ] ,  
Aeppli, Guggenheim and Uemara [2] were able to fit their data on the site dilute, 
two-dimensional Ising antiferromagnet Rb2(Mg,,4,Coo.59)F4 near the percolation 
threshold with an exceptionally large value for the dynamic exponent 2. Subsequently, 
standard dynamic scaling arguments [3] gave estimates for Z which agreed reasonably 
well with the experimental value. However, very recently, analytic work [4] on both 
non-random fractals and a randomly dilute two-dimensional lattice has led to sugges- 
tions that usual dynamic scaling breaks down at low temperatures; one has an effective 
dynamic critical exponent which diverges as the temperature is lowered. As the 
experimentalists [2] were restricted to relatively high temperatures ( T /  T C a  0.5, where 
T, is the transition temperature in the pure system), they were unable to see the 
predicted violation of dynamic scaling. 

This letter adds numerical work to the discussion by presenting the results of Monte 
Carlo simulations of the two-dimensional Ising model on a square lattice at the bond 
percolation threshold. The Hamiltonian is given by [l] 

where Si = *1 are Ising spins situated on every site of an L x  L ( L  = 64) lattice, (. . .) 
indicates a summation over nearest neighbours only and the Jij are quenched exchange 
interactions with probability distribution 

P ( J i j )  = (1 -p)6(Jij)+p8(Jij - 1) (2) 

p being the bond concentration. Boltzmann’s constant is set to unity. Throughout, the 
simulations are performed at the bond percolation threshold [6] p c  = 0.5 and periodic 
boundary conditions are imposed in all directions. The distributed array processor 
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(DAP) at Queen Mary College, London, was used to perform the calculations. Approxi- 
mately 7 million spins are updated per second. For any given temperature, T, the 
nearest-neighbour interactions are chosen according to equation (2) and the Hoshen- 
Kopelman [7] algorithm (with periodic boundary conditions) is used to check that the 
bonds percolate throughout the lattice. The spins, which are all pointing up at the 
start of the simulation, are allowed to evolve according to the Glauber [8] probability 
(1 + exp(AE/ T))-', where AE is the change of energy resulting from an update. 

The magnetisation at time t is given by M (  t )  = N-' X i  Si(  t ) ,  where N is the number 
( N  = 4096) of spins and Si(  t )  denotes the value of the ith spin at time t. Since the 
system described by equations (1) and (2) with p = p c  = 0.5 has a zero temperature 
phase transition [ 11, T,( p c )  = 0, the magnetisation vanishes in equilibrium for T # 0. 
For each temperature investigated, M ( t )  is seen to decrease with t and, eventually, 
M( t = to 3 T ~ )  = 0, where T~ is a temperature-dependent decay time. The configuration 
at t = to is taken as an initial state of the system and the spin-spin autocorrelation 
function C (  t )  = N-' Z i  Si( to)&( t +  to) is measured for subsequent times. From C (  t ) ,  
one defines a relaxation time T by 

T = Iom C (  t )  d t  (3) 

where, in practice, C (  t )  = 0 for t > to. Data for T were collected for 0.7 < T s 2.0. For 
T < 0.7 the system does not achieve equilibrium within the available computer time. 
At the lowest temperature simulated, T = 0.7, a run of lo6 Monte Carlo steps per spin 
was performed, of which the first 500 000 were required for equilibration. Note that 
duririg the simulations the value of to was chosen liberally ( t o  = 2 ~ ~ ) ,  so that one could 
be reasonably certain that equilibrium had been achieved. Averages over many (typi- 
cally 36-200) samples were taken and statistical error bars ( S 71%) evaluated from 
the sample-to-sample fluctuations. Once the system has attained equilibrium, evalu- 
ation of the spatial correlation function 

where (. . .)T indicates a thermal average and n(n = 0,1, .  . . , 10) is the displacement 
in the x direction, yields information concerning the statics. For technical reasons, 
I-( n )  was studied over a restricted temperature range, namely 1.05 < T s 2.0. 

The pure system [9] ( p  = 1) has T, = 2.27 in the units used in this letter (where the 
exchange interaction is set to unity). Consequently, the simulations described here 
are over the range 0.31 5 T/ T,=s 0.88, whereas the experiment [2] was performed for 
T/Tc30.5.  

As at p = p c  the percolation correlation length is infinite, the correlation length, 
5 ( p c ,  T), is given by the thermal correlation length tT[13. For asymptotically large 
n( n >> &) the spin-spin correlation function, equation (4), can be fitted by r( n) - 
exp(-n/&), thereby enabling one to extract &. Figure 1 shows a plot of In tT against 
1/ T for 1.05 s T s 2.0. The linear fit shown there implies that 

5T = 50 exP(2vTlT) ( 5 )  

where vT is the thermal exponent and to is a constant. The result vT = 1.33 f 0.05 
obtained in the simulations confirms the prediction [ 101 of a crossover exponent of 1 
and is in excellent agreement with the exact result [ l ,  111 vT = vp=:, where vp 
is the percolation exponent. If one fits the experimental [2] value of tT at T = 50 K 
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Figure 1. Plot of In tT against 1/  T for 1.05 L TS 2.0. The error bars are from statistical 
fluctuations. The weighted line of best fit is also shown. This has gradient=2.66*0.09 
and intercept= -1.52*0.02; from the gradient one gets v T =  1.33*0.05 and from the 
intercept to = 0.22 * 0.01 (see text). Assuming vT = 1.33 and to = 0.22, one gets tT( T = 0.7) = 
9.83 lattice spacings. 

to equation (5) with vT = !, one obtains [ 121 to = 0.39 which is, of course, near the site 
percolation threshold. At T/ T, = 0.46, the lowest temperature at which T(n) is evalu- 
ated, tT = 2.76 and by extrapolation one expects that at T/ T, = 0.31, tT = 9.83. So, at 
low temperatures, although f T  >>lattice spacing (assumed to be l),  one always has 
L >> &-. Consequently, one does not expect the results of the simulations to be influenced 
by finite size effect. 

Ordinary dynamic scaling [5] would imply that along p = pc in the neighbourhood 
of the bicritical point, ( T, p )  = (0, p c ) ,  the relaxation time r - [$, where Z is a dynamic 
critical exponent. On fitting the experimental data [2] to this hypothesis one gets 
Z=2.4*0.1. However, within conventional theory one has Z = 2 - v T  for a system 
without conserved order parameter [ 131 and, further, as vT = 0.33 for the diluted 
antiferromagnet studied by Aeppli, Guggenheim and Uemura [2, 141, one sees that 
Z = 1.67. It has been argued [2,3] that the percolating network is the underlying cause 
for the discrepancy between the experimental and theoretical values. Subsequently, 
arguments [4] have been proposed which suggest that the self-similarity of the lattice 
at p c  has a far more drastic consequence for the dynamics of the system: at low 
temperatures conventional dynamic scaling [5] fails and one instead has that [4] 

7 = rO&%+B ( 6 )  
where ro is a constant, A and B are new exponents and f T  is the thermal correlation 
length discussed previously. Combining equations (5) and (6) gives 

l n T = C , / T 2 + C 2 / T + C 3  (7) 
where C,=4Av:, C2=2vT(B+2Aln5,) and C3=In70+BIn50+A(ln50)2.  Figure 2 
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Figure 2. The results for the relaxation time shown as a plot of In 7 against 1/ T for 
0 . 7 s  TS2.0 (0.31 s T / T c S 0 . 8 8 ) .  The full curve is the best quadratic fit to the data for 
0 . 7 s  T S 1 . 5  (0.31ST/TcS0.66). Letting y=C,x2+C2x+Cj,  where y = l n ~ ,  x = l / T ,  
one has C, = 3.60, C, = 4.59 and C, = -3.36 for the fit indicated above. These coefficients 
imply A = 0.51, E = 3.25. 

shows the results for In T against 1/ T for 0.7 s T s 2.0. Clearly, as T + 0, In T diverges 
much faster than 1/ T. As one expects equation (7) to be true for T /  T,<c 1, the best 
quadratic fit to the data over 0.31 s T /  TcsO.66 (0 .7s  T s  1.5) is also shown; for this 
one has A = 0.51, B = 3.25. Using a recursive argument, Harris and Stinchcombe [4] 
(see also Stinchcombe [4]) have suggested that A=0.54. As was mentioned above, 
the experimental results [2] for T /  T, b 0.5 were fitted to T - ($. If one fits the data 
from the computer simulations for T 2 1.1 ( T /  T, b 0.48) to standard dynamic scaling 
one gets Z = 2.71. 

The error bars shown in figure 2 were obtained from statistical fluctuations. The 
values of A and E depend on the temperature range chosen for the quadratic fit. For 
example, if one fits the data over the whole range (0.31 S T /  T c s  0.88), one gets A = 0.68, 
B = 2.62. 

Universality would demand that the exponents A and B are the same for any 
diluted two-dimensional Ising system. It is interesting to note that the value of A 
obtained in the computer simulations-on a square two-dimensional lattice at the bond 
percolation threshold-is approximately the same as that obtained by the real space 
calculation of Hams and Stinchcombe [4] and Stinchcombe [4] on a two-dimensional 
honeycomb lattice with bond dilution; further, the experimental data [2], which was 
obtained on a square two-dimensional lattice near the site percolation threshold, when 
fitted to equation (7) also gives a similar value for A, namely A = 0.5 i 0.2 (see Harris 
and Stinchcombe [4]). 

To conclude, by performing Monte Carlo simulations at low temperatures, it has 
been shown that conventional dynamic scaling breaks down for the two-dimensional 
Ising model at the percolation threshold. It is suggested that the new dynamic behaviour 
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should also be seen in the experimental system for T/ T, S 0.4. The computer simula- 
tions have confirmed recent analytic work and, further, have enabled estimates for 
both A and B to be given. 

I should like to thank Dr R B Stinchcombe for suggesting this problem to me, for 
many helpful discussions and for a critical reading of the manuscript. The Science 
and Engineering Research Council (Great Britain), which supports the distributed 
array processor ( DAP) at Queen Mary College, London, is acknowledged for financial 
assistance. 
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